目 次

1	公	きから地球環境へ	
	1-1	地球の歴史と人類の出現	• 1
	1-2	公害と地球環境問題	. 2
	1-3	足尾銅山鉱毒事件	. 3
	1-4	四大公害病	. 5
	1-	4-1 水俣病·新潟水俣病 ·······	. 5
	1-	4-2 イタイイタイ病	. 6
	1-	4-3 四日市ぜんそく	. 6
	1-5	公害対策から地球環境問題へ	. 7
2	生生	態系の成り立ちとしくみ	
	2-1	生態系の成り立ち	. 9
	2-2	生態系における物質の流れ	10
	2-3	生態系におけるエネルギーの流れ	11
	2-4	生態ピラミッド	14
	2-5	植物群落(植生)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
3	<	らしの中のエネルギー	
	3-1	エネルギー利用の歴史	19
		一次エネルギーと二次エネルギー	19
	3-3	世界のエネルギー情勢	20
	3-4		21
	3-5		24
			25
	3-	5-2 太陽光	25
	3-	5-3 風 力	26
	3-	5-4 バイオマス	26
	3-	5-5 地 熱	28
	3-	5-6 リサイクルエネルギー	29

4 大気汚染と酸性雨	
4-1 地球の大気	30
4-2 大気汚染物質の種類と性質	31
4-2-1 一酸化炭素(CO)	32
4-2-2 二酸化炭素(CO2)	32
4-2-3 二酸化硫黄(SO2)	32
4-2-4 窒素酸化物(NOx)	33
4-2-5 揮発性有機化合物 (VOC) ······	33
4-2-6 浮遊粒子状物質 (SPM) ······	33
4-2-7 オゾン (O3) ······	34
4-2-8 芳香族炭化水素	35
4-3 大気汚染による公害	35
4-3-1 酸性雨	36
4-3-2 スモッグ・光化学スモッグ	37
5 地球温暖化	
5-1 地球温暖化のメカニズム	40
5-2 IPCC とは	42
5-3 世界における温暖化の現状	43
5-4 日本における温暖化の現状	44
5-5 地球温暖化の将来予測	47
5-5-1 RCP シナリオ	47
5-5-2 気温上昇 1.5℃超えの警鐘	48
5-5-3 温暖化の影響の地域差	50
5-5-4 温暖化の海洋への影響	50
5-5-5 温暖化のさらなる影響	50
5-5-6 日本における温暖化の将来予測	51
5-6 COP による地球温暖化への対応	53
5-7 地球温暖化への適応策	54
6 水をめぐる環境問題	
6-1 地球の水事情	57
6-2 日本の水事情	58
6-3 地下水	59
6-4 水質汚濁・富栄養化	60
6-4-1 水質汚濁	61
6-4-2 富栄養化	62
6-5 水質についての環境基準	63

	目 次
6-5-1 水素イオン濃度(pH) ····································	64
6-5-2 BOD・COD・溶存酸素	64
6-6 バーチャルウォーター	65
7 海の環境問題	
7-1 海の広さと深さ	68
7-2 海の生態系	70
7-3 日本の海とは	70
7-4 海の恵みを損なう要因とは	73
7-4-1 生息環境の物理的改変	74
7-4-2 漁業の問題	74
7-4-3 外来種の問題	74
7-4-4 地球温暖化の問題	75
7-5 海洋酸性化	75
7-6 海洋汚染	76
7-7 マイクロプラスチック	77
7-8 海の新たな可能性	79
8 免疫のしくみとアレルギー	
8-1 免疫のしくみ	81
8-1-1 生体防御機構	81
8-1-2 自然免疫	82
8-1-3 適応免疫:細胞性免疫と体液性免疫	82
8-1-4 免疫記憶とワクチン	84
8-2 自己免疫疾患	85
8-3 アレルギー	85
8-3-1 アレルギー発症のしくみ	86
8-3-2 アレルギー・マーチ	87
8-3-3 花粉症	88
8-4 アナフィラキシーショック	88
9 生活環境中の化学物質	
9-1 生活環境中の化学物質とリスク	90
9-2 内分泌かく乱化学物質(環境ホルモン)	91
9-2-1 DDT	91
9-2-2 PCB	91
9-2-3 その他の内分泌かく乱化学物質	92
9-2-4 内分泌かく乱化学物質の作用	92

н.	٧٠
н	//

9-3 ダイオキシン	94
9-4 化学物質とアレルギー	96
9-5 化学物質過敏症	96
9-5-1 化学物質過敏症の症状	96
9-5-2 化学物質過敏症の原因物質	96
9-5-3 化学物質過敏症の治療と対策	98
9-6 エコチル調査	99
10 新興感染症とパンデミック	
10-1 感染症とは	102
10-1-1 顕性感染と不顕性感染	102
10-1-2 感染症の感染経路	103
10-2 感染症のパンデミック	103
10-3 新興感染症と再興感染症	104
10-4 マールブルグ病・エボラ出血熱(エボラウイルス病)	106
10-5 後天性免疫不全症候群(AIDS)	107
10-6 インフルエンザ	108
10-6-1 インフルエンザの分類	108
10-7 コロナウイルス感染症	110
10-7-1 コロナウイルスとは	110
10-7-2 新型コロナウイルス感染症(COVID-19)	112
10-8 その他の感染症	113
10-9 人畜共通感染症	114
11 食と環境	
11-1 食料自給率から考える日本の食の現状	116
11-2 フードマイレージ	117
11-3 食に対する不安	118
11-3-1 消費期限・賞味期限・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
11-3-2 原産国・原産地・原材料	119
11-4 食品添加物	120
11-5 遺伝子組み換え作物・遺伝子組み換え食品	121
11-6 ゲノム編集食品·······	125
11-7 これからの食と農業	126
	120