目 次

構 造 編

1	結晶構造

1-1	結晶構造	3
1-2	無機結晶の分類	5
1-3	金 属	5
1-4	共有結晶	9
1-5	イオン結晶	10
コラ.	ム 結晶と準結晶・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1-6	分子結晶	17
コラ.	△ イオン結晶の結晶構造を決定する3つの因子	
9	不完全な構造	
	7元主な博煌	
2-1	点 欠 陥	
2-2	線 欠 陥	24
2-3	面 欠 陥	26
2-4	非晶質固体(アモルファス)	27
コラ.	ム 欠陥の及ぼす諸物質への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
0	高フ# W	
3	電子構造	
3-1	分子軌道法による説明	31
3-2	自由電子近似理論 ·····	35
3-3	バンド理論	39
3-4	フェルミーディラックの統計	41
3-5	半導体中のキャリアの分布と密度	44
コラ.	△ 電子の静止質量 m と有効質量 m* ···································	47

物 性 編

4	電気的性質(1) 導電性	
4-1	電気伝導率と抵効率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· 51
4-2	金 属	53
4-3	半 導 体	54
4-4	超 伝 導	58
コラ	フェミル粒子とボーズ粒子	61
4-5	イオン伝導	63
コラ	ム 超伝導体の特性と応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
5	電気的性質(2) 誘電性	
5-1	分極と電気双極子モーメント	67
5-2	誘電体の種類	69
5-3	強誘電体のドメイン構造と構造相転移	71
5-4	誘電率とコンデンサー容量	
コラ	ム 誘電体の誘電強度	76
5-5	誘電分散	
5-6	強誘電体の用途	
コラ	<u>ム</u> 誘電体結晶の結晶点群による分類と性質による分類との対比 ······	80
6	磁気的性質	
6-1	電気量と磁気量との比較	
6-2	軌道運動とスピンによる磁気モーメント	
6-3	磁性体の分類	85
6-4	磁気モーメントの方向を決める因子	88
6-5	希土類イオンの磁性と希土類磁石	91
6-6	自由電子と金属の磁性	93
6-7	強磁性の磁区構造と磁化曲線	96
6-8	磁性体の構造相転移	100
6-9	強磁性体の用途	102
コラ	<u> </u>	104

7	光学的性質
7-1	屈折と複屈折
7-2	反 射108
7-3	全 反 射
7-4	透過と吸収
7-5	発 光
コラ	<u>ム</u> 絶縁体と半導体の透明波長領域・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7-6	光電効果119
7-7	電気光学効果
7-8	磁気光学効果
7-9	非線形光学効果
コラ	<u>ム</u> 次世代照明の LED と有機 EL · · · · · · · · · · · · · · · · · ·
8	機械的性質
8-1	
8-2	弾性率
8-3	弹性変形 ····································
8-4	塑性変形
8-5	硬 度
	ム 金属材料の強化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
g	熱的性質
9-1	熱伝導率
9-2	定容比熱
9-3	熱膨張係数と融点
9-4	耐熱無機材料
コラ	<u>ム</u> フォノン ············146
10	ナノ物質とサイズ効果
10-1	微粒子化・ナノ粒子化に伴って生じる 3 つのサイズ効果
10-2	表面効果
10-3	体積効果153
10-4	量子サイズ効果

10-5	ナノ物質とナノマテリアル	157
コラム	以表ナノ物質	158
反	·····································	
IX.		
11	·····································	
• • •		
11-1	核の形成	
11-2	不均一核形成	
11-3	結晶の成長	167
11-4	核発生過程の制御	169
11-5	結晶成長過程の制御	170
11-6	ウィスカーの成長	171
11-7	エピタキシーとトポタキシー	173
10	相転移后床	
12	相転移反応	
12-1	一成分系の相平衡	175
12-2	二成分系の相平衡	176
12-3	相転移の形式による分類	180
12-4	相転移の熱力学的分類	183
12-5	相転移の速度	187
12-6	鋼の相変化	187
コラム	温度・圧力・電磁場と相転移・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
10	+r; +r; r; r	
13	拡散過程と拡散律速反応	
13-1	拡散の機構	191
13-2	カーケンドール効果	192
13-3	拡散の速度式	193
13-4	金属原子の拡散係数	195
13-5	イオンの拡散係数	196
	拡散律速反応—焼結	
14	固相の反応	
14-1	単一固体の反応	201

14-2	固体-気体反応
14-3	固体-液体反応
14-4	固体-固体反応
14-5	インターカレーション・・・・・・208
コラム] Li-GIC のリチウムイオン電池への応用 · · · · · · · 210
1 F 1	
15 1	無機固体の合成
15-1	単結晶の育成
15-2	多結晶体の製造
15-3	アモルファスの製造
15-4	ナノ粒子の製造
コラム] 単結晶 Si および 2 種のアモルファス Si の結合状態とバンド構造 ·······230
付録 I	結晶構造の表し方
付録Ⅱ	波数とその応用233
付録Ⅲ	バンド構造への 2 つのアプローチとその表現
付録IV	電子の角運動量と磁気モーメント
付録V	結晶場理論
索	引·······245